10 اردیبهشت 1403
محمدعلي مهتدي بناب

محمدعلی مهتدی بناب

مرتبه علمی: دانشیار
نشانی: شهرستان بناب، بزرگراه ولایت، دانشگاه بناب، دانشکده مهندسی مکانیک
تحصیلات: دکترای تخصصی / مهندسی مکانیک
تلفن: 04137745000
دانشکده: دانشکده فنی و مهندسی
گروه: گروه مهندسی مکانیک

مشخصات پژوهش

عنوان
The influence of addition of carbon nanotube and graphene platelets on characteristics of carbon/basalt fiber reinforced intra-ply hybrid composites
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
hydrophilic polymers, mechanical properties, thermal properties, thermogravimetric analysis (TGA)
پژوهشگران فرزین عظیم پور شیشوان (نفر اول)، محمدعلی مهتدی بناب (نفر دوم)، حمیت آکبولوت (نفر سوم)

چکیده

In this study, effects of addition of carbon nanotubes (CNTs) and graphene platelets (GPLs) on characteristics of carbon/basalt fiber reinforced intra-ply hybrid composites were investigated. The composites were fabricated using vacuum assisted resin infusion molding (VARIM) method in two types including bare and 0.1, 0.5 wt.% of GPL and CNT nanoparticles filled hybrid composites. Fabricated normal and multiscale composites were cut by water jet and mechanical properties of specimens were examined by tensile, flexural, SBS experiments. Therefore, the modulus of elasticity, flexural modulus, tensile and flexural strength and ILSS of bare and multiscale composites were compared. Thermomechanical properties of fabricated composites were evaluated by dynamic mechanic analyze (DMA), thermogravimetric analyze (TGA) and thermal conductivity (TC) tests and storage modulus, loss modulus, damping ratio, glass transition temperature, weight loss and derivative weight loss were compared in fabricated normal and multiscale composites. Similarly, modal properties of fabricated composites such as natural frequency and damping factor were obtained by vibrational tests and compared in fabricated composites. According to the results, the addition of carbon-based nanoparticles improved the characteristics of carbon/basalt fiber intra-ply hybrid composites. The response of composites was directly proportional to the addition ratio of the carbon-based nanoparticles.