1404/07/22
علی حاجی بدلی

علی حاجی بدلی

مرتبه علمی: استاد
ارکید: 0000-0001-5309-5902
تحصیلات: دکترای تخصصی
اسکاپوس: 24466165500
دانشکده: دانشکده علوم پایه
نشانی: بناب- دانشکده علوم پایه دانشگاه بناب
تلفن: 0416181-1642

مشخصات پژوهش

عنوان
تقارنی های غیر کلاسیک گروه لی برای معادلات دیفرانسیل کسری
نوع پژوهش
پایان نامه و رساله دکتری
کلیدواژه‌ها
آنالیز گروه های لی، تقارنی های کلاسیک و غیر کلاسیک، تبدیلات گروه لی، معادلات دیفرانسیل کسری هستند. در این رساله، از روش گروه های لی برای حل معادلات دیفرانسیل کسری با مشتقات جزئی استفاده می کنیم و نشان می دهیم که تبدیلات گروه لی به عنوان ابزار مناسب و توانمند برای حل معادلات دیفرانسیل قابل استفاده هستند و توسط آنها دسته ای از جوابهای معادلات دیفرانسیل با استفاده از تقارنی های کلاسیک و غیر کلاسیک به دست می آیند. در واقع دستیابی به انواع جوابهای
سال 1400
پژوهشگران فرزانه علیزاده(دانشجو)، میر سجاد هاشمی(استاد راهنما)، علی حاجی بدلی(استاد راهنما)

چکیده

اخیرا معادلات دیفرانسیل با مشتقات جزئی از مرتبه کسری کانون توجه بسیاری از محققان قرار گرفته است. این نوع معادلات برای توصیف دقیق تر پدیده فیزیکی و مدل سازی آنها به کار می روند. یکی از بزرگترین چالش های موجود در چنین مدل هایی، حل تحلیلی معادلات بدست آمده است به طوری که حتی روش های عددی محدود قادر به حل طیف وسیعی از معادلات دیفرانسیل کسری هستند. در این رساله، از روش گروههای لی برای حل معادلات دیفرانسیل با مشتقات جزئی استفاده می کنیم و نشان می دهیم که تبدیلات گروه لی به عنوان ایزار مناسب و توانمند برای حل معادلات دیفرانسیل قابل استفاده هستند و توسط آنها دسته ای از جوابهای معادلات دیفرانسیل با استفاده از تقارنی های کلاسیک و غیر کلاسیک به دست می آیند. در واقع دستیابی به انواع جوابهای دقیق از معادلات دیفرانسیل کسری کار بسیار دشواری یا گاها غیر ممکن است. لذا به دست آوردن جوابهای دقیق این معادلات از اهمیت زیادی برخوردار هست. در این رساله با توجه به تقارنی های غیر کلاسیک مطرح شده، دسته جدیدی از جوابهای تحلیلی برای معادلات دیفرانسیل کسری با مشتقات جزنی ارائه می دهیم که توسط تقارنی های کلاسیک قابل محاسبه نیستند.