1404/07/22
اردشیر محمدزاده

اردشیر محمدزاده

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده فنی و مهندسی
نشانی:
تلفن: 0413775000

مشخصات پژوهش

عنوان
A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications
نوع پژوهش
مقاله چاپ شده
کلیدواژه‌ها
Non-singleton type-2 fuzzy neural network High dimensional problems Learning algorithm Kalman filter
سال 1397
مجله NEUROCOMPUTING
شناسه DOI
پژوهشگران اردشیر محمدزاده ، Erkan Kayacan

چکیده

This paper develops a non-singleton type-2 fuzzy neural network (NT2FNN) with type-2 3-dimensional membership functions (MFs) and adaptive secondary membership. A new approach based on the squareroot cubature quadrature Kalman filter (SR-CQKF) is proposed for the training the level of the secondary membership and the centers of membership functions. The consequent parameters are learned by using rule-ordered extended Kalman filter (EKF). To show the applicability and effectiveness of proposed NT2FNN in high dimensional problems, four real-world datasets with 4, 7, 13 and 32 input variables are considered. Additionally, the performance of NT2FNN with the proposed learning algorithm is compared with other well-known neural networks and learning algorithms. The simulations demonstrate that the developed method results in high performance in contrast to the other methods.