2025/11/12
Hojat Afshari

Hojat Afshari

Academic rank: Professor
ORCID:
Education: PhD.
H-Index:
Faculty: Faculty of Basic Sciences
ScholarId:
E-mail: hojat.afshari [at] ubonab.ac.ir
ScopusId:
Phone: 04137745000-1640
ResearchGate:

Research

Title
Existence of the positive solutions for a tripled system of fractional dierential equations via integral boundary conditions
Type
JournalPaper
Keywords
Tripled system, fractional dierential equation, integral boundary conditions, existence and nonexistence of positive solutions.
Year
2021
Journal Results in Nonlinear Analysis
DOI
Researchers Hojat Afshari ، Hadi Shojaat ، Mansoureh Gholamyan

Abstract

The purpose of this paper, is studying the existence and nonexistence of positive solutions to a class of a following tripled system of fractional differential equations. \begin{eqnarray*} \left\{ \begin{array}{ll} D^{\alpha}u(\zeta)+a(\zeta)f(\zeta,v(\zeta),\omega(\zeta))=0, \quad \quad u(0)=0,\quad u(1)=\int_0^1\phi(\zeta)u(\zeta)d\zeta, \\ \\ D^{\beta}v(\zeta)+b(\zeta)g(\zeta,u(\zeta),\omega(\zeta))=0, \quad \quad v(0)=0,\quad v(1)=\int_0^1\psi(\zeta)v(\zeta)d\zeta,\\ \\ D^{\gamma}\omega(\zeta)+c(\zeta)h(\zeta,u(\zeta),v(\zeta))=0,\quad \quad \omega(0)=0,\quad \omega(1)=\int_0^1\eta(\zeta)\omega(\zeta)d\zeta,\\ \end{array} \right.\end{eqnarray*} \\ where $0\leq \zeta \leq 1$, $1<\alpha, \beta, \gamma \leq 2$, $a,b,c\in C((0,1),[0,\infty))$, $ \phi, \psi, \eta \in L^1[0,1]$ are nonnegative and $f,g,h\in C([0,1]\times[0,\infty)\times[0,\infty),[0,\infty))$ and $D$ is the standard Riemann-Liouville fractional derivative.\\ Also, we provide some examples to demonstrate the validity of our results.