2025 : 10 : 25
Mehdi Hosseinzadeh Aghdam

Mehdi Hosseinzadeh Aghdam

Academic rank: Associate Professor
ORCID: 0000-0002-3922-9991
Education: PhD.
ScopusId: 57194843379
HIndex: 19/00
Faculty: Faculty of Engineering
Address: Department of Computer Engineering, University of Bonab, Bonab, Iran
Phone: 041-37741636

Research

Title
Text-independent speaker verification using ant colony optimization-based selected features
Type
JournalPaper
Keywords
Speaker verification, Gaussian mixture model universal, background model (GMM-UBM), Feature selection, Ant colony optimization (ACO), Genetic algorithm (GA)
Year
2011
Journal EXPERT SYSTEMS WITH APPLICATIONS
DOI
Researchers Shahla Nemati ، Reza Boostani ، Mohammad Davarpanah Jazi ، Mehdi Hosseinzadeh Aghdam ، Ehsan Basiri

Abstract

With the growing trend toward remote security verification procedures for telephone banking, biometric security measures and similar applications, automatic speaker verification (ASV) has received a lot of attention in recent years. The complexity of ASV system and its verification time depends on the number of feature vectors, their dimensionality, the complexity of the speaker models and the number of speakers. In this paper, we concentrate on optimizing dimensionality of feature space by selecting relevant features. At present there are several methods for feature selection in ASV systems. To improve performance of ASV system we present another method that is based on ant colony optimization (ACO) algorithm. After feature reduction phase, feature vectors are applied to a Gaussian mixture model universal background model (GMM-UBM) which is a text-independent speaker verification model. The performance of proposed algorithm is compared to the performance of genetic algorithm on the task of feature selection in TIMIT corpora. The results of experiments indicate that with the optimized feature set, the performance of the ASV system is improved. Moreover, the speed of verification is significantly increased since by use of ACO, number of features is reduced over 80% which consequently decrease the complexity of our ASV system.