09 فروردین 1403
مهدي ثقفي

مهدی ثقفی

مرتبه علمی: استادیار
نشانی: آذربایجان شرقی - بناب - دانشگاه بناب
تحصیلات: دکترای تخصصی / مهندسی هسته ای
تلفن: 041-61811621
دانشکده: دانشکده فنی و مهندسی
گروه: گروه مهندسی مکانیک

مشخصات پژوهش

عنوان
Application of FFTBM with signal mirroring to improve accuracy assessment of MELCOR code
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
ثبت نشده‌است!
پژوهشگران مهدی ثقفی (نفر اول)، محمدباقر غفرانی (نفر دوم)، Francesco D'auria (نفر سوم)

چکیده

This paper deals with the application of Fast Fourier Transform Base Method (FFTBM) with signal mirroring (FFTBM-SM) to assess accuracy of MELCOR code. This provides deeper insights into how the accuracy of MELCOR code in predictions of thermal-hydraulic parameters varies during transients. The case studied was modeling of Station Black-Out (SBO) accident in PSB-VVER integral test facility by MELCOR code. The accuracy of this thermal-hydraulic modeling was previously quantified using original FFTBM in a few number of time-intervals, based on phenomenological windows of SBO accident. Accuracy indices calculated by original FFTBM in a series of time-intervals unreasonably fluctuate when the investigated signals sharply increase or decrease. In the current study, accuracy of MELCOR code is quantified using FFTBMSM in a series of increasing time-intervals, and the results are compared to those with original FFTBM. Also, differences between the accuracy indices of original FFTBM and FFTBM-SM are investigated and correction factors calculated to eliminate unphysical effects in original FFTBM. The main findings are: (1) replacing limited number of phenomena-based time-intervals by a series of increasing time-intervals provides deeper insights about accuracy variation of the MELCOR calculations, and (2) application of FFTBM-SM for accuracy evaluation of the MELCOR predictions, provides more reliable results than original FFTBM by eliminating the fluctuations of accuracy indices when experimental signals sharply increase or decrease. These studies have been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant.