1404/07/22
مجتبی سجادمنش

مجتبی سجادمنش

مرتبه علمی: استادیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن: 04137745000-1644

مشخصات پژوهش

عنوان
جبر خطی
نوع پژوهش
کتاب
کلیدواژه‌ها
دستگاه های خطی، فضاهای برداری، دترمینان و تشابه
سال 1402
پژوهشگران مجتبی سجادمنش ، پریسا وفادار

چکیده

کتاب حاضر مشتمل بر پنج فصل می باشد؛ فصل اول شامل دستگاه های خطی و حل آنها به روش گاوس بوده که تعبیر هندسی جواب های یک چنین دستگاه هایی نیز بیان می شود. در ادامه، فرم پلکانی تحویل یافته گاوس -جردن دستگاه های خطی به منظور توصیف ساده مجموعه جواب دستگاه های خطی مطرح می گردد. در فصل دوم، مفهوم فضاهای برداری با ارائه مثال های گوناگون در فضاهای مختلف مانند مجموعه تمامی توابع حقیقی، مجموعه ماتریس های m×n و ... آورده می شود و مفاهیمی مانند زیرفضاهای برداری، مجموعه های مولد، مجموعه چندجمله ای های درجه استقلال خطی و وابستگی خطی و در ادامه، مفهوم پایه برای یک فضای برداری و نمایش یک بردار نسبت به یک پایه دلخواه و نیز ارتباط بین مجموعه های مولد، مستقل خطی و پایه بیان می شوند. درنهایت، مفهوم مجموع مستقیم زیرفضاهای برداری با ارائه مثال ها و قضایای مختلف مطرح می گردد. فصل سوم شامل نگاشت های خطی بین فضاهای برداری بوده که تعریف و خاصیت های یک چنین نگاشت هایی با ارائه مثال های مختلف بیان می شوند. همچنین، در ادامه با تعریف نگاشت های یکریختی و به دنبال آن، با حذف یکی از شرایط یکریختی، نگاشت های همریختی با مثال ها و قضیه های مرتبط با آنها آورده می شوند و مفاهیمی مانند فضای پوچ، فضای برد، پوچی و رتبه یک همریختی بیان می گردند. درنهایت، ماتریس نمایشگر یک نگاشت خطی نسبت به پایه های مختلف و نحوه تشکیل آن بیان می شود. در بخش آخر نیز، مفاهیمی مانند تصویر متعامد یک بردار روی یک خط، تصویر یک بردار در یک زیرفضا در امتداد زیرفضای دیگر و نیز قضیه مشهور متعامد سازی گرام - اشمیت باارائه مثال های مختلف مطرح می گردند. فصل چهارم شامل تعریف دترمینان و بیان خاصیت های مهم تابع دترمینان بوده که با استفاده از این خاصیت ها و بکارگیری روش گاوس می توان دترمینان یک ماتریس مربعی را محاسبه نمود. در ادامه نیز با ارائه بسط جایگشتی برای دترمینان ها، نحوه استفاده از این بسط برای محاسبه دترمینان یک ماتریس بیان می شود. در بخش آخر نیز، بسط لاپلاس دترمینان ها به منظور محاسبه دترمینان یک ماتریس مطرح می گردد. در فصل پنجم، مفهوم تشابه با ارائه مثال های گوناگون بین دو ماتریس بیان می گردد و در ادامه، با تعریف ماتریس های قطری شدنی و عملگرهای قطری شدنی، با ارائه شرایط لازم و کافی به بررسی قطری شدنی بودن یک عملگر پرداخته می شود. در