May 16, 2024
Sayyad Nojavan

Sayyad Nojavan

Academic rank: Associate professor
Address:
Education: Ph.D in ٍElectrical Power Engineering
Phone: 09148903379
Faculty: Faculty of Engineering
Department: Electrical Engineering

Research

Title
Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program
Type Article
Keywords
Downside risk constraints Hydrogen storage system Risk-in-cost Stochastic operation Wind generation
Researchers Dongmin Yu، Jiawei Wang، Dezhi Li، Kittisak Jermsittiparsert، Sayyad Nojavan

Abstract

Wind generation (WG) units as renewable energy sources (RESs) are increasing in the world due to environmental functions and lack of conventional energy sources. Also, hydrogen storage system (HSS) as an energy storage system (ESS) is used to cope with variable nature of RESs in which the concepts of power to hydrogen (P2H) and hydrogen to power (H2P) are defined. In this work, a risk-averse stochastic operation of HSS and WG is modeled using a scenario-based stochastic approach by considering price-responsive demand response (DR) program. All uncertainties are modeled via a scenario-based stochastic approach while the risk related uncertainties are modeled via the downside risk constraints (DRC) to capture the risk-averse operation of the HSS and WG. In order to investigate the impact of DRC implementation, a risk-averse strategy is compared versus risk-neutral strategy. Compared results show that the risk-in-cost (RIC) is reduced while the expected operation cost (EOC) is raised to deal with the risk of the uncertainty.