May 16, 2024
Sayyad Nojavan

Sayyad Nojavan

Academic rank: Associate professor
Address:
Education: Ph.D in ٍElectrical Power Engineering
Phone: 09148903379
Faculty: Faculty of Engineering
Department: Electrical Engineering

Research

Title
Robust optimization of renewable-based multi-energy micro-grid integrated with flexible energy conversion and storage devices
Type Article
Keywords
Multi-energy microgrid Wind energy Electrical vehicle Hybrid robust/stochastic approach Power-to-gas Demand response
Researchers Amir Aris Lekvan، Reza Habibifar، Mehran Moradi، Mohammad Khoshjahan، Sayyad Nojavan، Kittisak Jermsittiparsert

Abstract

This paper presents a new model for optimal scheduling of renewable-based multi-energy microgrid (MEM) systems incorporated with emerging high-efficient technologies such as electric vehicle (EVs) parking lots, power-to-gas (P2G) facility, and demand response programs. The proposed MEM is equipped with wind energy, multi-carrier energy storage technologies, boiler, combined heat and power unit, P2G, EVs, and demand response with the aim of total operational cost minimization. Meanwhile, the system operator can participate in three electricity, heat, and gas market to meet local demands as well as achieve desired profits through energy exchanges. The proposed MEM is exposed to high-level uncertainties due to wind energy, demand, the initial and final state of charge of EVs, arrival and departure times of EVs, as well as power price. A hybrid robust/stochastic framework is used to capture all random variables and distinguishes between the level of conservatism in the decision-making procedure. The electricity price uncertainty is addressed by a robust approach, while a stochastic framework models other uncertainties of the system. Simulations are provided for different cases, which results revealed that the integrated scheduling of MEM in the presence of emerging technologies, incorporated with vehicle-to-grid (V2G) capability, reduces the total operational cost by 14.2 %.