May 16, 2024
Sayyad Nojavan

Sayyad Nojavan

Academic rank: Associate professor
Address:
Education: Ph.D in ٍElectrical Power Engineering
Phone: 09148903379
Faculty: Faculty of Engineering
Department: Electrical Engineering

Research

Title
Risk modeling of an industrial area with shared storage of several buildings using downside risk constraint method considering peer-to-peer trading
Type Article
Keywords
Industrial buildings Peer-to-peer trade Shared storage Local electricity market Downside risk constraint Risk-neutral Risk-averse Battery storage
Researchers Yue Huang، Esmaeil Valipour، Sayyad Nojavan، Morteza Hoseinzadeh، Saeid Kargozar

Abstract

The Peer-to-peer (P2P) trading strategy is one of the valuable methods that could be used in various local electricity markets with different aims, such as peak shaving and energy cost reduction. In this paper, due to the enforcement of financial risks, a risk evaluation procedure called the downside risk constraint (DRC) method is applied to analyze the effects of the P2P method and shared storage trading in an industrial area in both risk-neutral risk-averse models. The industrial zone includes various buildings that are connected to each other and include different DERs. The investigation is performed in three separate cases: base case, P2P case, and P2P+shared storage case. According to the obtained results, for a high-level risk, we need to spend more currency to keep the system's security at a high level. For example, the amount of achieved cost in the risk-averse model is 816,000$ in the third case. Besides, the potential savings are attained in electricity costs; for instance, in the risk-neutral model, 14.8% of electricity cost is reduced in the second and 21.5% in the third cases. The reduction of electricity price is because the amount of purchasing power from the grid is declined with the help of DERs.