1404/07/22

سمیرا رهروی

مرتبه علمی: استادیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن: 04137745000

مشخصات پژوهش

عنوان
نتایجی درموردنیم پیوستگی بالایی وپایینی نگاشت های چند مقداری ونرم پیوستگی نگاشت های شبه پیوسته نقطه به نقطه
نوع پژوهش
پایان نامه و رساله دکتری
کلیدواژه‌ها
تابعمجموعه مقدار، شبه پیوستگی، پیوستگی رسته ای، فضاهای توسعه پذیر، نیم پیوستگی، فشرده ولدیویا.
سال 1399
پژوهشگران پریسا محمدفام(دانشجو)، حجت افشاری(استاد راهنما)، سمیرا رهروی(استاد راهنما)

چکیده

In this thesis, we have investigated joint upper and lower semicontinuity of twovariable set-valued functions. More precisely, among other results, we shown have that under certain conditions, a two-variable lower horizontally quasicontinuous mapping F : X × Y → K(Z) is jointly upper semicontinuous on sets of the from D × {y0}, where D is a dense Gδ subset of X and y0 ∈ Y . Similar result for joint lower semicontinuity of upper horizontally quasicontinuous mappings is obtained. These have improved some known results on joint continuity of singlevalued functions. Also, Let X be a Baire space, Y be a compact Hausdorff space and φ : X −→ Cp(Y ) be a quasicontinuous mapping. For a proximal subset H of Y × Y we have used topological games G1(H) and G2(H) on Y × Y between two players to prove that if the first player has a winning strategy in these games, then φ is norm continuous on a dense Gδ subset of X. It follows that if Y is Valdivia compact, each quasicontinuous mapping from a Baire space X to Cp(Y ) is norm continuous on a dense Gδ subset of X. also, we prove that a compactvalued multifunction F : X × Y −→ Z, where X is a Baire space and Y , Z are separable metrizable spaces, is quasi-continuous if and only if F is horizontally quasi-continuous and there exists an residual subset M of X such that for any x ∈ M the multifunction Fx = F(x, ·) is quasi-continuous on Y .