May 8, 2024
Ali Navid

Ali Navid

Academic rank: Assistant professor
Address: Department of Laser and optical Engineering, University of Bonab, Bonab, Iran
Education: Ph.D in Physics-optics
Phone: 04137745000-1623
Faculty: Faculty of Science
Department: Photonics

Research

Title
Versatile selective absorption-based optical fiber toward epinephrine detection
Type Article
Keywords
Lossy Mode Resonance, Optical Fiber Biosensors, Molecular Imprinting Polymer, Epinephrine, Polydopamine, Graphene Oxide
Researchers Tahereh Azargoshasb، Roghaieh Parvizi، Ali Navid، Gholam-Mohammad Parsanasab، Hadi Heidati

Abstract

A versatile lossy mode resonance (LMR) sensor is developed for Epinephrine monitoring based on the state-of-the-art molecular imprinting technique over an optical fiber. The optical absorption concept of the LMR-based sensor is proven by incorporating an amino silane-functionalized graphene oxide (SiO2-NH2@GO) as an adhesive layer for grafting Epinephrine imprinting polydopamine (Ep-IPDA) as a sensing layer onto the optical fiber curved surface. The accurate structural and morphological characterization confirmed the rough crystalline and spherical particles for Ep-IPDA and SiO2-NH2-GO onto optical fiber curved surface, while spectroscopic analysis confirms the formation of imprinting polymer and desirable absorbance characteristics. The optimized probe exhibits an excellent performance with the maximum sensitivity within two intervals of 0.3–1 µM and 1–90 µM along with the linearity coefficient of R2 = 0.99 possessing a low limit of detection of 0.07 µM. Additionally, this sensor selectively detects Ep in the presence of other species and showed good recovery in human urine and injection samples. This work opens a new avenue for developing bio-inspired LMR-based optical fiber biosensors and could be further extended to detect other catecholamine neurotransmitters.