May 4, 2024
Mohammad Ali Mohtadi Bonab

Mohammad Ali Mohtadi Bonab

Academic rank: Associate professor
Address: Department of Mechanical Engineering, University of Bonab, Velayat Highway, Bonab, Iran
Education: Ph.D in Mechanical Engineering
Phone: 04137745000
Faculty: Faculty of Engineering
Department: Mechanical Engineering

Research

Title
The influence of addition of carbon nanotube and graphene platelets on characteristics of carbon/basalt fiber reinforced intra-ply hybrid composites
Type Article
Keywords
hydrophilic polymers, mechanical properties, thermal properties, thermogravimetric analysis (TGA)
Researchers Farzin Azimpour shishevan، Mohammad Ali Mohtadi Bonab، Hamit Akbulut

Abstract

In this study, effects of addition of carbon nanotubes (CNTs) and graphene platelets (GPLs) on characteristics of carbon/basalt fiber reinforced intra-ply hybrid composites were investigated. The composites were fabricated using vacuum assisted resin infusion molding (VARIM) method in two types including bare and 0.1, 0.5 wt.% of GPL and CNT nanoparticles filled hybrid composites. Fabricated normal and multiscale composites were cut by water jet and mechanical properties of specimens were examined by tensile, flexural, SBS experiments. Therefore, the modulus of elasticity, flexural modulus, tensile and flexural strength and ILSS of bare and multiscale composites were compared. Thermomechanical properties of fabricated composites were evaluated by dynamic mechanic analyze (DMA), thermogravimetric analyze (TGA) and thermal conductivity (TC) tests and storage modulus, loss modulus, damping ratio, glass transition temperature, weight loss and derivative weight loss were compared in fabricated normal and multiscale composites. Similarly, modal properties of fabricated composites such as natural frequency and damping factor were obtained by vibrational tests and compared in fabricated composites. According to the results, the addition of carbon-based nanoparticles improved the characteristics of carbon/basalt fiber intra-ply hybrid composites. The response of composites was directly proportional to the addition ratio of the carbon-based nanoparticles.