May 4, 2024
Mohammad Ali Mohtadi Bonab

Mohammad Ali Mohtadi Bonab

Academic rank: Associate professor
Address: Department of Mechanical Engineering, University of Bonab, Velayat Highway, Bonab, Iran
Education: Ph.D in Mechanical Engineering
Phone: 04137745000
Faculty: Faculty of Engineering
Department: Mechanical Engineering

Research

Title
The effect of SiC nanoparticles on deformation texture of ARB-processed steel-based nanocomposite
Type Article
Keywords
Nanoparticle Nanocomposite Texture Accumulative roll bonding process
Researchers Roohollah Jamaati، Mohammad Reza Toroghinejad، Mohammad Ali Mohtadi Bonab، Ghader Hosseinzadeh، Jerzy A. Szpunar، Mohammad Reza Salmani

Abstract

In this study, the influence of SiC nanoparticles on deformation texture of steel-based nanocomposite fabricated by accumulative roll bonding process was investigated. It was found that there was a texture transition from the rolling texture to the shear texture for both pure interstitial free steel and steel-based nanocomposite. However, the texture transition occurred in different cycles for the pure steel (the third cycle) and steel-based nanocomposite (the first cycle). It was realized that the fraction of low misorientation angle grain boundaries was decreased and the fraction of high misorientation angle grain boundaries was increased by the number of cycles. Also, recrystallization occurred in the pure steel and steel-based nanocomposite samples after the third and first cycles, respectively. In addition, the occurrence of recrystallization in steel-based nanocomposite was sooner than that of pure steel. At the early stage of dynamic recrystallization in processed steels, the {011}< 100>-oriented grains were evolved and the fraction of grains with α-fiber and γ-fiber orientations was slightly decreased. The formation of the rolling texture in the steel-based nanocomposite samples was different from the typical rolling texture for the pure steel samples, due to the presence of the SiC nanoparticles in the nanocomposite. The weak rolling texture was attributed to the high stored energy of deformation, which was, in turn, due to low deformation temperature