مشخصات پژوهش

صفحه نخست /Existence of the positive ...
عنوان Existence of the positive solutions for a tripled system of fractional dierential equations via integral boundary conditions
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Tripled system, fractional dierential equation, integral boundary conditions, existence and nonexistence of positive solutions.
چکیده The purpose of this paper, is studying the existence and nonexistence of positive solutions to a class of a following tripled system of fractional differential equations. \begin{eqnarray*} \left\{ \begin{array}{ll} D^{\alpha}u(\zeta)+a(\zeta)f(\zeta,v(\zeta),\omega(\zeta))=0, \quad \quad u(0)=0,\quad u(1)=\int_0^1\phi(\zeta)u(\zeta)d\zeta, \\ \\ D^{\beta}v(\zeta)+b(\zeta)g(\zeta,u(\zeta),\omega(\zeta))=0, \quad \quad v(0)=0,\quad v(1)=\int_0^1\psi(\zeta)v(\zeta)d\zeta,\\ \\ D^{\gamma}\omega(\zeta)+c(\zeta)h(\zeta,u(\zeta),v(\zeta))=0,\quad \quad \omega(0)=0,\quad \omega(1)=\int_0^1\eta(\zeta)\omega(\zeta)d\zeta,\\ \end{array} \right.\end{eqnarray*} \\ where $0\leq \zeta \leq 1$, $1<\alpha, \beta, \gamma \leq 2$, $a,b,c\in C((0,1),[0,\infty))$, $ \phi, \psi, \eta \in L^1[0,1]$ are nonnegative and $f,g,h\in C([0,1]\times[0,\infty)\times[0,\infty),[0,\infty))$ and $D$ is the standard Riemann-Liouville fractional derivative.\\ Also, we provide some examples to demonstrate the validity of our results.
پژوهشگران حجت افشاری (نفر اول)، هادی شجاعت (نفر دوم)، منصوره سیاهکلی مرادی (نفر سوم)