عنوان
|
A new non-Riemannian curvature related to the class of (\alpha;\beta )-metrics
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
Hopf maximum principle, Elliptic operator, (\alpha;\beta )-metrics, S- curvature.
|
چکیده
|
In this paper, we nd a new non-Riemannian quantity for (\alpha;\beta )-metrics that is closely related to the \tilde{S}-curvature. We call it the \tilde{S}-curvature. Then we show that an (\alpha;\beta )-metric is Riemannian if and only if \tilde{S}=0. For a Randers metric , we find the relation between S-curvature and \tilde{S}-curvature.
|
پژوهشگران
|
علی حاجی بدلی (نفر اول)، ژیلا مجیدی (نفر دوم)
|