مشخصات پژوهش

صفحه نخست /Boundary value problem of ...
عنوان Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces Lp (.)
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Fractional differential equations Boundary value problem Fixed point theorem Variable exponent Lebesgue spaces Banach contraction principle Ulam-Hyers stability
چکیده This manuscript deals with the existence, uniqueness and stability of solutions to the boundary value problem (BVP) of Riemann-Liouville (RL) fractional differential equations (FDEs) in the variable exponent Lebesgue spaces (Lp(.)). The generalized intervals and piece-wise constant functions are utilized to extract the aims of current paper. The variable exponent Lebesgue spaces (Lp(.)) are converted to the classical Lebesgue spaces. Further, the Banach contraction principle is used, the Ulam-Hyers-stability is examined and finally, an illustrative example is given to the validity of the observed results.
پژوهشگران میر سجاد هاشمی (نفر سوم)، mustafa Inc (نفر دوم)، Ahmed Refice (نفر اول)، Mohammed Said Souid (نفر چهارم)