مشخصات پژوهش

صفحه نخست /On the signed strong total ...
عنوان On the signed strong total Roman domination number of graphs
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Signed total Roman dominating function Signed total Roman domination number Strong Roman dominating function Signed strong Roman dominating function
چکیده Let $G=(V,E)$ be a finite and simple graph of order $n$ and maximum degree $\Delta$. A signed strong total Roman dominating function on a graph $G$ is a function $f:V(G)\rightarrow\{-1, 1,2,\ldots, \lceil \frac{\Delta}{2}\rceil+1\}$ satisfying the condition that (i) for every vertex $v$ of $G$, $f(N(v))=\sum_{u\in N(v)}f(u)\geq 1$, where $N(v)$ is the open neighborhood of $v$ and (ii) every vertex $v$ for which $f(v)=-1$ is adjacent to at least one vertex $w$ for which $f(w)\geq 1+\lceil\frac{1}{2}\vert N(w)\cap V_{-1}\vert\rceil$, where $V_{-1}=\{v\in V: f(v)=-1\}$. The minimum of the values $\omega(f)=\sum_{v\in V}f(v)$, taken over all signed strong total Roman dominating functions $f$ of $G$, is called the signed strong total Roman domination number of $G$ and is denoted by $\gamma_{ssTR}(G)$. In this paper, we initiate signed strong total Roman domination number of a graph and give several bounds for this parameter. Then, among other results, we determine the signed strong total Roman domination number of special classes of graphs.
پژوهشگران مریم عطاپور (نفر دوم)، سپیده نوروزیان (نفر سوم)، اکرم محمودی (نفر اول)