مشخصات پژوهش

صفحه نخست /Dispersive perturbations of ...
عنوان Dispersive perturbations of solitons for conformable fractional complex Ginzburg–Landau equation with polynomial law of nonlinearity using improved modified extended tanh-function method
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Highly dispersive solitons; Complex Ginzburg–Landau equation; Conformable fractional derivative; Improved modified extended tanh method
چکیده This study examines the analytic wave solutions of a highly dispersive perturbed complex Ginzburg–Landau equation (CGLE) with conformable fractional derivative and polynomial law of nonlinearity using the improved modified extended tanh-function method. The results show a wide range of solutions including (bright, dark, singular) solitons, Jacobi elliptic solutions, exponential solutions, and Weierstrass elliptic solutions. The obtained soliton solutions showcase diverse dynamics, encompassing different solitary waves and localized structures. The polynomial nonlinearity adds complexity to the dynamics, resulting in the emergence of new solitons with distinct characteristics. The impact of the fractional derivative is illustrated graphically using examples of some of the retrieved solutions with various values of fractional order.
پژوهشگران میر سجاد هاشمی (نفر پنجم)، مصطفی بایرام (نفر ششم به بعد)، Hamdy M Ahmed (نفر سوم)، Niveen Badra (نفر چهارم)، Islam Samir (نفر دوم)، Mahmoud Soliman (نفر اول)