عنوان
|
On quintic (α,β)-metrics in Finsler geometry
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
Weakly Landsberg metric, Landsberg metric, Berwald metric, (α, β)-metric, S-curvature, Ξ-curvature
|
چکیده
|
In this paper, we study the class of quintic (α, β)-metrics. We show that every weakly Landsberg 5-th root (α, β)-metrics has vanishing Scurvature. Using it, we prove that a quintic (α, β)-metric is a weakly Landsberg metric if and only if it is a Berwald metric. Then, we show that a quintic (α, β)-metric satisfies Ξ = 0 if and only if S = 0.
|
پژوهشگران
|
علی حاجی بدلی (نفر دوم)، ژیلا مجیدی (نفر اول)
|