عنوان
|
Weakly-Einstein three-dimensional Lorentzian manifolds
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
algebraic models, curvature identity, Lorentzian 3-metric, weakly- Einstein conditions, 1-curvature homogeneous.
|
چکیده
|
Berger’s curvature identity is studied on Lorentzian algebraic curvature models of dimension three, and homogeneous weakly-Einstein spaces are classified. We show that spaces with two-step nilpotent Ricci operators are the only non-Einstein spaces which satisfy all weakly-Einstein conditions simultaneously. Non-homogeneous examples are constructed using Walker structures.
|
پژوهشگران
|
علی حاجی بدلی (نفر اول)، پروانه آتش پیکر (نفر دوم)
|