عنوان
|
Existence, stability, and numerical simulation of a nonlinear brain tumor model
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
Fractal-fractional derivative; Mathematical modeling; Fixed point theory; Stability; Existence and uniqueness; Brain tumor
|
چکیده
|
This research introduces a novel mathematical model for brain tumor growth incorporating a fractal fractional derivative. We investigate the existence and uniqueness of solutions for this model, as well as its stability properties, using a novel contraction known as the generalized $\alpha-\psi$-Geraghty-type contraction. Our stability analysis is based on the Ulam–Hyers framework. The findings presented in this study constitute a significant contribution to the field.
|
پژوهشگران
|
حجت افشاری (نفر اول)، سبیله کلانتری (نفر دوم)، حمیدرضا مراثی (نفر چهارم)، مهرداد انواری (نفر سوم)
|