مشخصات پژوهش

صفحه نخست /Existence, stability, and ...
عنوان Existence, stability, and numerical simulation of a nonlinear brain tumor model
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Fractal-fractional derivative; Mathematical modeling; Fixed point theory; Stability; Existence and uniqueness; Brain tumor
چکیده This research introduces a novel mathematical model for brain tumor growth incorporating a fractal fractional derivative. We investigate the existence and uniqueness of solutions for this model, as well as its stability properties, using a novel contraction known as the generalized $\alpha-\psi$-Geraghty-type contraction. Our stability analysis is based on the Ulam–Hyers framework. The findings presented in this study constitute a significant contribution to the field.
پژوهشگران حجت افشاری (نفر اول)، سبیله کلانتری (نفر دوم)، حمیدرضا مراثی (نفر چهارم)، مهرداد انواری (نفر سوم)