Research Info

Home /-Experimental-Numerical ...
Title -Experimental-Numerical Assessment of Mechanical Behavior of Laboratory-Made Steel and NiTi Shape Memory Alloy Wire Ropes
Type JournalPaper
Keywords shape memory alloy (SMA); experimental-numerical assessment; steel wire ropes; mechanical behavior; helix angle; quasi-static sinusoidal loading; earthquake excitation
Abstract The mechanical behaviors of laboratory-fabricated steel and superelastic shape memory alloy (SMA) wire ropes are assessed in this study through a comprehensive approach encompassing both experimental investigations and finite element (FE) numerical simulations. The assessment of steel wire ropes involves experimental scrutiny under sinusoidal cyclic loading and natural earthquake loading conditions. In parallel, SMA wire ropes’ behaviors are analyzed utilizing FE simulations employing the widely acknowledged ABAQUS software version 2020. The validation of all numerical simulations is undertaken against the experimentally observed behaviors. Moreover, full-scale steel wire ropes are subjected to shaking table tests to validate the simulations, facilitating a comparative analysis between the mechanicalresponses of SMA and steel wire ropes. The findings demonstrate that SMA wire ropes exhibit superelastic behavior akin to SMA wires, with marginal variations in overall response observed across distinct configurations, akin to steel wire ropes. Furthermore, augmenting the helix angle of SMA wire ropes results in reduced stress and increased strain when exposed to the El Centro earthquake scenario.
Researchers Farshad Karazmay (Not In First Six Researchers), alireza babaeian amini (Not In First Six Researchers), mahdi chavoshi (Not In First Six Researchers), Ali Saman Watandoust (Fifth Researcher), Mohammad Momeni (Fourth Researcher), Somayeh Mollaei (Third Researcher), Neda Fazlalipour (Second Researcher), peyman narjabadifam (First Researcher)